

White Paper

Four Keys to Successful
Multicore Optimization for

Machine Vision

Optimizing a machine vision application for multicore PCs can be a
complex process with unpredictable results. Developers need to pay close
attention in order to achieve the best overall system performance. Field
testing under real world operating conditions is the only way to fully
measure system throughput.

By John Petry, Cognex Corporation, Business Unit Marketing Manager, Vision Software

INTRODUCTION

For many years, increases in machine vision speed came almost automatically with increasing

microprocessor speeds. However, this is no longer true with multicore PC architectures, which require major

software design changes to take advantage of the parallel processing architecture.

A successful multicore strategy for machine vision can be implemented at multiple levels. Independent

high-level tasks—especially those with hardware dependencies, such as acquisition and I/O—can be written

to run asynchronously on separate cores. This leaves the processor free to concentrate on those tasks that

are not blocked. Individual vision tools can also be parallelized so that they divide their processing task

among several cores.

MULTICORE PC ARCHITECTURE

In the past, vision applications have depended on advances in PC hardware performance to handle bigger

and more complex applications. Improved performance resulted from faster CPUs and associated hardware

improvements. But faster processors require greater and greater heat dissipation, to the point where cooling

has become a limiting factor.

Manufacturers such as Intel and AMD have addressed this by moving to an approach that uses multiple

processors to do the job previously done by a single processor. These processors are packaged on a single

chip. Each processor is called a “core”, and the new chips are called multicore processors. Two, four and

eight-core processors are now common, while much higher density models are also being designed.

A 2 GHz dual-core processor might appear to have the same computing power as a 4 GHz single-core

processor, but this is rarely true. To take full advantage of each core, software applications must be written to

distribute the computation between the cores. Otherwise one core will sit idle for at least part of the time.

 1

Optimized Software Is the Key

One cannot simply move an existing machine vision application from a single-core PC to a multicore PC and

expect to see a significant performance improvement. In fact, some applications may not run any faster on a

multicore machine due to operating system overhead and other inefficiencies. Application developers and

vision software vendors must rewrite their programs if they want to take advantage of multicore architectures

to speed up their applications. This can be a complex task, and many algorithms do not easily lend

themselves to parallel processing.

This paper discusses four keys to successful multicore optimization for machine vision applications:

1. Application Optimization

2. Vision Tool Optimization

3. Tuning for Overall System Performance

4. Software Portability

Processes and Threads

The PC operating system manages programs as separate processes. Each process has an associated

context which makes it appear to the program that it owns all of the computer resources such as CPU,

memory, I/O, etc. When a process is blocked—for example, when it is waiting for an I/O resource—or when

its time slice ends, the operating system saves the current context and swaps in another process. The

operating system juggles process priorities in order to be as responsive as possible to a wide range of

demands, most of which are invisible to the user.

A multithreaded program can be written so that different sections run simultaneously and independently. This

is similar to running multiple processes, but threads are much lighter weight; in particular, they share the

same address space. This allows the operating system to quickly switch between them, and makes it easy

for them to share data when running in parallel.

Multithreaded applications do not require a multicore architecture. They can be very efficient on a single-core

machine, but rely on the operating system to manage hardware resources for them. Multithreading is

especially well suited for multicore PCs. Those parts of a machine vision algorithm that previously ran

sequentially can be partitioned into separate threads that now run in parallel on separate cores.

 2

Commercial Multithreaded Software

Writing multithreaded application code is not simple, and there are often timing dependencies that make it

hard to debug in a real world environment. It may also require the underlying machine vision libraries to be

written in a re-entrant manner that allows multiple instances of the program to execute in parallel. It takes a

skilled programmer to write robust multithreaded applications. For this reason, writing custom software at the

application layer to take advantage of a multicore PC is usually only justified in very demanding applications.

As a practical matter, it’s usually much more effective for machine vision users to purchase commercial

software that is already optimized for multicore PCs. Off-the-shelf solutions may not be as efficient as custom

code, but they can provide significant benefits at very low cost.

1. APPLICATION OPTIMIZATION

Application-level software can be optimized for multicore PCs in three ways:

1. By creating separate threads for tasks with hardware dependencies, such as image acquisition,

accept/reject results, and operator interaction,

These threads are often designed to minimize unpredictable hardware delays. For

example, the system needs to be ready to respond to a trigger event, but should

not delay image processing in order to poll the triggering hardware every several

milliseconds.

2. By creating separate threads for each camera in a multi-camera application,

This allows each thread to run as soon as its camera is triggered.

3. By creating separate threads for different machine vision tasks within a vision application.

For example, one thread might handle part alignment while another measures

critical dimensions. However, this only works if the tasks are not dependent on

each other, and the benefit will be small if one task is much shorter than the other.

 3

Some commercial machine vision products build in these features. For example, Cognex VisionPro™

software can automatically create separate threads for image acquisition and vision processing. The software

is designed to automatically detect the number of cores in a PC and create threads based upon the number of

cores available. This type of scalability is a great advantage in multicore PCs for applications with multiple

image acquisition and vision processing tasks which need to perform simultaneously. It’s even beneficial on

single-core PCs, because image acquisition does not use much CPU time and can therefore run in parallel

with image processing operations.

2. VISION TOOL OPTIMIZATION

In addition to application-level optimization, it’s possible to optimize machine vision tools by parallelizing their

algorithms so they use multiple cores simultaneously.

However, not all vision tools can be easily parallelized. In general, parallelization is most helpful for image

processing filters or other vision tools that run local operations on small regions of the image. Commonly used

filters include median, Gaussian and morphology operations. These can be optimized by dividing the image

into different pieces and assigning each one to a separate thread. The results from each thread are then

combined to produce the final result (see Figure 1). The final speedup depends on the algorithm and the

number of cores. Because of overhead, there will always be some inefficiencies, so even a well-optimized

vision tool may not run eight times faster on an eight-core PC.

Input Image Partitioned Images Output Image

Figure 1. Example of partitioning an image across multiple threads

Unfortunately, many vision applications spend most of their processing on tools that are much more complex

than simple image processing filters. It’s not always possible to parallelize complex vision tool algorithms such

as alignment. In these cases, optimizing the tool might only benefit a small portion of the algorithm.

 4

Cognex understands this and is working to optimize its most important alignment and inspection tools. For

example, the PatInspect™ tool has been redesigned so that inspection steps are divided among the available

cores. Even when the percentage improvement is lower than for simple image processing filters, the overall

application may benefit more, since complex machine vision tools generally consume a larger portion of the

overall application.

3. TUNING FOR OVERALL SYSTEM PERFORMANCE

It might seem that the fastest vision application would be one that had control over every processor core in

the PC, and which created one thread to run on each core. Real world applications are not that simple,

however. The PC must also support operating system, machine control and other background tasks. In

practice, the optimum number of threads for the vision application may not necessarily be the same as the

number of cores in the PC, and it may not make sense to assign each thread to a specific core.

Figure 2. A vision application divided into three threads running on a four-core PC

Figure 3. One vision thread per core may not be the optimum choice. This application finishes later
than the one in Figure 2, even though this one has one thread per core. Depending on the

application, more or fewer threads may be better.

The only way to determine the optimum number of machine vision threads is to test it under realistic

conditions. For this reason, Cognex’s CVL™ and VisionPro™ software libraries give users a simple method to

set the number of threads for multicore-aware vision tools in an application. This top-level ability lets users

easily tune the system for best overall performance.

 5

4. SOFTWARE PORTABILITY

Another real world concern is software portability from one PC to another. PC hardware changes so quickly

that many vision applications will be deployed on multiple PC models over their lifetime, either when new

vision stations are deployed or when a PC needs to be replaced. The machine vision application is frequently

developed on a different PC than the one on which it is deployed. Additionally, replacing PCs deployed in

manufacturing lines is a constant maintenance issue.

Since the number of cores available may change over time, it’s important to have a vision application that can

account for any number of cores in the system. Otherwise, redeploying the existing system on a different PC

may require recompilation, or worse, rewriting the application software. This can be cost prohibitive for many

companies as development stations are modified and developers move on to other projects.

To avoid this, CVL and VisionPro libraries can automatically detect the number of cores on a PC and

dynamically adjust the number of threads that they create. This allows applications written for a four-core PC

to run efficiently on an eight-core PC without touching the source code or recompiling. That provides huge

downstream maintenance savings, while offering the ability to upgrade performance simply by deploying the

system on a PC with more cores.

SUMMARY

Optimizing a machine vision application for multicore PCs can be a complex process with unpredictable

results. Even in this simple overview, it is clear that developers need to pay close attention in order to achieve

the best overall system performance. In particular, field testing under real world operating conditions is the

only way to fully measure system throughput.

In order to maximize the benefits of multicore PC technology in machine vision applications, developers

should consider several key questions when evaluating machine vision software products. These should

include not only obvious points such as whether some image processing filters have been optimized for

multicore, but also other factors that can significantly impact the performance of the overall application,

including:

 Can the software product automatically create separate acquisition and processing threads to speed

system throughput and responsiveness?

 Does the software allow users to write their own multithreaded application?

 Can users tune the number of threads for best overall system performance?

 6

 7

 Does the software have the ability to automatically detect and adjust the number of threads, based

on the number of cores, without having to rewrite the application?

By keeping these points in mind, users can maximize their options (and minimize their work!) to take full

advantage of multicore PC technology.

~

About the author

John Petry has worked in machine vision for twenty years and is currently the marketing manager for Cognex

Corporation’s Vision Software Business Unit, which includes the VisionPro™ and CVL™ product lines, along

with numerous automation products for industries as diverse as vision-guided robotics, pharmaceutical

packaging and semiconductor manufacturing. He has been a software developer, an engineering manager,

and a product manager for a wide range of products, including the VisionPro software library and Cognex’s

wafer identification business. He holds five patents in machine vision and a bachelor of science degree from

the Massachusetts Institute of Technology.

Americas
United States, East +1 508-650-3000
United States, South +1 615-844-6158
United States, West +1 650-969-4812
United States, Detroit +1 248-668-5100
United States, Chicago +1 630-649-6300
Canada +1 905-634-2726
Mexico +52 81 5030-7258
Central America +1 972-365-3463
South America +1 972-365-3463

Europe
Austria +43 1 23060 3430
France +33 1 4777 1550
Germany +49 721 6639 0
Hungary +36 1 501 0650
Ireland +353 1 825 4420
Italy +39 02 6747 1200
Netherlands +31 402 668 565
Spain +34 93 445 67 78
Sweden +46 21 14 55 88
Switzerland +41 71 313 06 05
United Kingdom +44 1908 206 000

Asia
China +86 21 6320 3821
India +91 80 4022 4118
Japan +81 3 5977 5400
Korea +82 2 539 9047
Singapore +65 632 55 700
Taiwan +886 3 578 0060

Corporate Headquarters One Vision Drive, Natick, MA 01760 USA Tel: +1 508.650.3000 Fax: +1 508.650.3344

www.cognex.com

Companies around the world rely on Cognex vision to optimize quality and drive down costs.

© Copyright 2009, Cognex Corporation. All information in this document is subject to change without notice. All rights reserved.
Cognex is a registered trademark of Cognex Corporation.
All other trademarks are the property of their respective owners. Printed in the USA. Lit. No.: WP04-20090226-0

	MULTICORE PC ARCHITECTURE
	Commercial Multithreaded Software
	1. APPLICATION OPTIMIZATION
	2. VISION TOOL OPTIMIZATION
	3. TUNING FOR OVERALL SYSTEM PERFORMANCE
	4. SOFTWARE PORTABILITY
	SUMMARY
	090226_Cognex_Four_Keys_Multicore_WP-new.pdf
	MULTICORE PC ARCHITECTURE
	Commercial Multithreaded Software
	1. APPLICATION OPTIMIZATION
	2. VISION TOOL OPTIMIZATION
	3. TUNING FOR OVERALL SYSTEM PERFORMANCE
	4. SOFTWARE PORTABILITY
	SUMMARY

